
Chapter 16

Sending an E-Mail
In This Chapter

▶ Defining the series of events for sending an e-mail

▶ Developing an e-mail application

▶ Testing the e-mail application

T

his chapter helps you understand the process of sending an e-mail using
Python. More important, this chapter is generally about helping you

understand what happens when you communicate outside the local PC. Even
though this chapter is specifically about e-mail, it also contains principles
you can use when performing other tasks. For example, when working with
an external service, you often need to create the same sort of packaging as
you do for an e-mail. So, the information you see in this chapter can help you
understand all sorts of communication needs.

To make working with e-mail as easy as possible, this chapter uses standard
mail as a real-world equivalent of e-mail. The comparison is apt. E-mail was
actually modeled on real-world mail. Originally, the term e-mail was used for
any sort of electronic document transmission, and some forms of it required
the sender and recipient to be online at the same time. As a result, you may
find some confusing references online about the origins and development
of e-mail. This chapter views e-mail as it exists today — as a storing and for-
warding mechanism for exchanging documents of various types.

The examples in this chapter rely on the availability of a Simple Mail Transfer
Protocol (SMTP) server. If that sounds like Greek to you, read the sidebar
entitled “Considering the SMTP server” that appears later in the chapter.

310 Part IV: Performing Advanced Tasks

Understanding What Happens
When You Send E-mail

E-mail has become so reliable and so mundane that most people don’t under-
stand what a miracle it is that it works at all. Actually, the same can be said of
the real mail service. When you think about it, the likelihood of one particular

Considering the simple mail transfer protocol
When you work with e-mail, you see a lot of
references to Simple Mail Transfer Protocol
(SMTP). Of course, the term looks really techni-
cal, and what happens under the covers truly
is technical, but all you really need to know is
that it works. On the other hand, understanding
SMTP a little more than as a “black box” that
takes an e-mail from the sender and spits it out
at the other end to the recipient can be useful.
Taking the term apart (in reverse order), you see
these elements:

 ✓ Protocol: A standard set of rules. E-mail
work by requiring rules that everyone
agrees upon. Otherwise, e-mail would
become unreliable.

 ✓ Mail transfer: Documents are sent from
one place to another, much the same as
what the post office does with real mail. In
e-mail’s case, the transfer process relies on
short commands that your e-mail applica-
tion issues to the SMTP server. For example,
the MAIL FROM command tells the SMTP
server who is sending the e-mail, while the
RCPT TO command states where to send it.

 ✓ Simple: States that this activity goes on
with the least amount of effort possible. The
fewer parts to anything, the more reliable it
becomes.

If you were to look at the rules for transferring
the information, you would find they’re anything
but simple. For example, RFC1123 is a standard
that specifies how Internet hosts are supposed
to work (see http://www.faqs.org/
rfcs/rfc1123.html for details). These
rules are used by more than one Internet
technology, which explains why most of them
appear to work about the same (even though
their resources and goals may be different).

Another, entirely different standard, RFC2821,
describes how SMTP specifically implements
the rules found in RFC1123 (see http://
www.faqs.org/rfcs/rfc2821.html
for details). The point is, a whole lot of rules
are written in jargon that only a true geek
could love (and even the geeks aren’t sure).
If you want a plain-English explanation of
how e-mail works, check out the article at
http://computer.howstuffworks.
com/e-mail-messaging/email.htm.
Page 4 of this article (http://computer.
howstuffworks.com/e-mail-
messaging/email3.htm) describes the
commands that SMTP uses to send informa-
tion hither and thither across the Internet. In
fact, if you want the shortest possible descrip-
tion of SMTP, page 4 is probably the right place
to look.

311 Chapter 16: Sending an E-Mail

letter leaving one location and ending up precisely where it should at the
other end seems impossible — mind-boggling, even. However, both e-mail
and its real-world equivalent have several aspects in common that improve
the likelihood that they’ll actually work as intended. The following sections
examine what happens when you write an e-mail, click Send, and the recipi-
ent receives it on the other end. You might be surprised at what you discover.

Viewing e-mail as you do a letter
The best way to view e-mail is the same as how you view a letter. When you
write a letter, you provide two pieces of paper as a minimum. The first con-
tains the content of the letter, the second is an envelope. Assuming that the
postal service is honest, the content is never examined by anyone other than
the recipient. The same can be said of e-mail. An e-mail actually consists of
these components:

 ✓ Message: The content of the e-mail, which is actually composed of two
subparts:

 •	Header: The part of the e-mail content that includes the subject,
the list of recipients, and other features, such as the urgency of the
e-mail.

 •	Body: The part of the e-mail content that contains the actual mes-
sage. The message can be in plain text, formatted as HTML, and
consisting of one or more documents, or it can be a combination of
all these elements.

 ✓ Envelope: A container for the message. The envelope provides sender
and recipient information, just as the envelope for a physical piece of
mail provides. However, an e-mail doesn’t include a stamp.

When working with e-mail, you create a message using an e-mail application.
As part of the e-mail application setup, you also define account information.
When you click send:

 1. The e-mail application wraps up your message, with the header first, in an
envelope that includes both your sender and the recipient’s information.

 2. The e-mail application uses the account information to contact the
SMTP server and send the message for you.

 3. The SMTP server reads only the information found in the message enve-
lope and redirects your e-mail to the recipient.

 4. The recipient e-mail application logs on to the local server, picks up the
e-mail, and then displays only the message part for the user.

312 Part IV: Performing Advanced Tasks

The process is a little more complex than this explanation, but this is essen-
tially what happens. In fact, it’s much the same as the process used when
working with physical letters in that the essential steps are the same. With
physical mail, the e-mail application is replaced by you on one end and the
recipient at the other. The SMTP server is replaced by the post office and the
employees who work there (including the postal carriers). However, someone
generates a message, the message is transferred to a recipient, and the recipi-
ent receives the message in both cases.

Defining the parts of the envelope
There is a difference in how the envelope for an e-mail is configured and how
it’s actually handled. When you view the envelope for an e-mail, it looks just
like a letter in that it contains the address of the sender and the address of
the recipient. It may not look physically like an envelope, but the same com-
ponents are there. When you visualize a physical envelope, you see certain
specifics, such as the sender’s name, street address, city, state, and zip code.
The same is true for the recipient. These elements define, in physical terms,
where the postal carrier should deliver the letter or return the letter when it
can’t be delivered.

However, when the SMTP server processes the envelope for an e-mail, it must
look at the specifics of the address, which is where the analogy of a physical
envelope used for mail starts to break down a little. An e-mail address con-
tains different information from a physical address. In summary, here is what
the e-mail address contains:

 ✓ Host: The host is akin to the city and state used by a physical mail enve-
lope. A host address is the address used by the card that is physically
connected to the Internet, and it handles all the traffic that the Internet
consumes or provides for this particular machine. A PC can use Internet
resources in a lot of ways, but the host address for all these uses is the
same.

 ✓ Port: The port is akin to the street address used by a physical mail
envelope. It specifies which specific part of the system should receive
the message. For example, an SMTP server used for outgoing messages
normally relies on port 25. However, the Point-of-Presence (POP3) server
used for incoming e-mail messages usually relies on port 110. Your
browser typically uses port 80 to communicate with websites. However,
secure websites (those that use https as a protocol, rather than http)
rely on port 443 instead. You can see a list of typical ports at http://
en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers.

313 Chapter 16: Sending an E-Mail

 ✓ Local hostname: The local hostname is the human-readable form of
the combination of the host and port. For example, the website www.
myplace.com might resolve to an address of 55.225.163.40:80 (where
the first four numbers are the host address and the number after the
colon is the port). Python takes care of these details behind the scenes
for you, so normally you don’t need to worry about them. However, it’s
nice to know that this information is available.

Now that you have a better idea of how the address is put together, it’s time
to look at it more carefully. The following sections describe the envelope of
an e-mail in more precise terms.

Host
A host address is the identifier for a connection to a server. Just as an address
on an envelope isn’t the actual location, neither is the host address the actual
server. It merely specifies the location of the server.

 The connection used to access a combination of a host address and a port is
called a socket. Just who came up with this odd name and why isn’t important.
What is important is that you can use the socket to find out all kinds of informa-
tion that’s useful in understanding how e-mail works. The following steps help
you see hostnames and host addresses at work. More important, you begin to
understand the whole idea of an e-mail envelope and the addresses it contains.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type import socket and press Enter.

 Before you can work with sockets, you must import the socket library.
This library contains all sorts of confusing attributes, so use it with cau-
tion. However, this library also contains some interesting functions that
help you see how the Internet addresses work.

 3. Type socket.gethostbyname(“localhost”) and press Enter.

 You see a host address as output. In this case, you should see 127.0.0.1
as output because localhost is a standard hostname. The address,
127.0.0.1, is associated with the host name, localhost.

 4. Type socket.gethostbyaddr(“127.0.0.1”) and press Enter.

 Be prepared for a surprise. You get a tuple as output, as shown in
Figure 16-1. However, instead of getting localhost as the name of the
host, you get the name of your machine. You use localhost as a common
name for the local machine, but when you specify the address, you get
the machine name instead. In this case, Main is the name of my personal
machine. The name you see on your screen will correspond to your
machine.

314 Part IV: Performing Advanced Tasks

Figure 16-1:

The local-

host

address

actually cor-

responds

to your

machine.

 5. Type socket.gethostbyname(“www.johnmuellerbooks.com”) and press
Enter.

 You see the output shown in Figure 16-2. This is the address for my web-
site. The point is that these addresses work wherever you are and what-
ever you’re doing — just like those you place on a physical envelope.
The physical mail uses addresses that are unique across the world, just
as the Internet does.

Figure 16-2:

The

addresses

that you

use to send

e-mail are

unique

across the

Internet.

 6. Close the Python shell.

Port
A port is a specific entryway for a server location. The host address specifies
the location, but the port defines where to get in. Even if you don’t specify a
port every time you use a host address, the port is implied. Access is always

315 Chapter 16: Sending an E-Mail

granted using a combination of the host address and the port. The following
steps help illustrate how ports work with the host address to provide server
access:

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type import socket and press Enter.

 Remember that a socket provides both host address and port informa-
tion. You use the socket to create a connection that includes both items.

 3. Type socket.getaddrinfo(“localhost”, 110) and press Enter.

 The first value is the name of a host you want to obtain information
about. The second value is the port on that host. In this case, you obtain
the information about localhost port 110.

 You see the output shown in Figure 16-3. The output consists of two
tuples: one for the Internet Protocol version 6 (IPv6) output and one
for the Internet Protocol version 4 (IPv4) address. Each of these tuples
contains five entries, four of which you really don’t need to worry
about because you’ll likely never need them. However, the last entry,
('127.0.0.1', 110), shows the address and port for localhost
port 110.

Figure 16-3:

The local-

host host

provides

both an IPv6

and an IPv4

address.

 4. Type socket.getaddrinfo(“johnmuellerbooks.com”, 80) and press Enter.

 Figure 16-4 shows the output from this command. Notice that this
Internet location provides only an IPv4 address, not an IPv6, address,
for port 80. The socket.getaddrinfo() method provides a useful
method for determining how you can access a particular location.
Using IPv6 provides significant benefits over IPv4 (see http://www.
networkcomputing.com/networking/six-benefits-of-ipv6/
d/d-id/1232791 for details), but most Internet locations provide only
IPv4 support now.

316 Part IV: Performing Advanced Tasks

Figure 16-4:

Most

Internet

locations

provide

only an IPv4

address.

 5. Type socket.getservbyport(25) and press Enter.

 You see the output shown in Figure 16-5. The socket.getservbyport()
method provides the means to determine how a particular port is used.
Port 25 is always dedicated to SMTP support on any server. So, when you
access 127.0.0.1:25, you’re asking for the SMTP server on localhost. In
short, a port provides a specific kind of access in many situations.

Figure 16-5:

Standardized

ports provide

specific

services on

every server.

 6. Close the Python shell.

 Some people assume that the port information is always provided. However,
this isn’t always the case. Python will provide a default port when you don’t
supply one, but relying on the default port is a bad idea because you can’t be
certain which service will be accessed. In addition, some systems use nonstan-
dard port assignments as a security feature. Always get into the habit of using
the port number and ensuring that you have the right one for the task at hand.

317 Chapter 16: Sending an E-Mail

Local hostname
A hostname is simply the human-readable form of the host address. Humans
don’t really understand 127.0.0.1 very well (and the IPv6 addresses make
even less sense). However, humans do understand localhost just fine. There
is a special server and setup to translate human-readable hostnames to host
addresses, but you really don’t need to worry about it for this book (or pro-
gramming in general). When your application suddenly breaks for no appar-
ent reason, it helps to know that one does exist, though.

The “Host” section, earlier in this chapter, introduces you to the hostname to
a certain extent through the use of the socket.gethostbyaddr() method,
whereby an address is translated into a hostname. You saw the process in
reverse using the socket.gethostbyname() method. The following steps
help you understand some nuances about working with the hostname:

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type import socket and press Enter.

 3. Type socket.gethostname() and press Enter.

 You see the name of the local system, as shown in Figure 16-6. The name
of your system will likely vary from mine, so your output will be different
than that shown in Figure 16-6, but the idea is the same no matter which
system you use.

Figure 16-6:

Sometimes

you need

to know

the name

of the local

system.

 4. Type socket.gethostbyname(socket.gethostname()) and press Enter.

 You see the IP address of the local system, as shown in Figure 16-7.
Again, your setup is likely different from mine, so the output you see will
differ. This is a method you can use in your applications to determine
the address of the sender when needed. Because it doesn’t rely on any
hard-coded value, the method works on any system.

 5. Close the Python shell.

318 Part IV: Performing Advanced Tasks

Figure 16-7:

Avoid using

hard-coded

values for

the local

system

whenever

possible.

Defining the parts of the letter
The “envelope” for an e-mail address is what the SMTP server uses to route the
e-mail. However, the envelope doesn’t include any content — that’s the pur-
pose of the letter. A lot of developers get the two elements confused because
the letter contains sender and receiver information as well. This information
appears in the letter just like the address information that appears in a busi-
ness letter — it’s for the benefit of the viewer. When you send a business letter,
the postal delivery person doesn’t open the envelope to see the address infor-
mation inside. Only the information on the envelope matters.

 It’s because the information in the e-mail letter is separate from its informa-
tion in the envelope that nefarious individuals can spoof e-mail addresses. The
envelope potentially contains legitimate sender information, but the letter may
not. (When you see the e-mail in your e-mail application, all that is present is
the letter, not the envelope — the envelope has been stripped away by the
e-mail application.) For that matter, neither the sender nor the recipient infor-
mation may be correct in the letter that you see onscreen in your e-mail reader.

The letter part of an e-mail is actually made of separate components, just as
the envelope is. Here is a summary of the three components:

 ✓ Sender: The sender information tells you who sent the message. It con-
tains just the e-mail address of the sender.

 ✓ Receiver: The receiver information tells you who will receive the mes-
sage. This is actually a list of recipient e-mail addresses. Even if you
want to send the message to only one person, you must supply the
single e-mail address in a list.

319 Chapter 16: Sending an E-Mail

 ✓ Message: Contains the information that you want the recipient to see.
This information can include the following:

 •	From: The human-readable form of the sender.

 •	To: The human-readable form of the recipients.

 •	CC: Visible recipients who also received the message, even though
they aren’t the primary targets of the message.

 •	Subject: The purpose of the message.

 •	Documents: One or more documents, including the text message
that appears with the e-mail.

E-mails can actually become quite complex and lengthy. Depending on the
kind of e-mail that is sent, a message could include all sorts of additional
information. However, most e-mails contain these simple components, and
this is all the information you need to send an e-mail from your application.
The following sections describe the process used to generate a letter and its
components in more detail.

Defining the message
Sending an empty envelope to someone will work, but it isn’t very exciting. In
order to make your e-mail message worthwhile, you need to define a message.
Python supports a number of methods of creating messages. However, the
easiest and most reliable way to create a message is to use the Multipurpose
Internet Mail Extensions (MIME) functionality that Python provides (and no, a
MIME is not a silent person with white gloves who acts out in public).

As with many e-mail features, MIME is standardized, so it works the same
no matter which platform you use. There are also numerous forms of MIME
that are all part of the email.mime module described at https://docs.
python.org/3/library/email.mime.html. Here are the forms that you
need to consider most often when working with e-mail:

 ✓ MIMEApplication: Provides a method for sending and receiving applica-
tion input and output

 ✓ MIMEAudio: Contains an audio file

 ✓ MIMEImage: Contains an image file

 ✓ MIMEMultipart: Allows a single message to contain multiple subparts,
such as including both text and graphics in a single message

 ✓ MIMEText: Contains text data that can be in ASCII, HTML, or another
standardized format

320 Part IV: Performing Advanced Tasks

Although you can create any sort of an e-mail message with Python, the easi-
est type to create is one that contains plain text. The lack of formatting in the
content lets you focus on the technique used to create the message, rather
than on the message content. The following steps help you understand how
the message-creating process works, but you won’t actually send the mes-
sage anywhere.

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type the following code (pressing Enter after each line):

from email.mime.text import MIMEText
msg = MIMEText("Hello There")
msg['Subject'] = "A Test Message"
msg['From']='John Mueller <John@JohnMuellerBooks.com>'
msg['To'] = 'John Mueller <John@JohnMuellerBooks.com>'

 This is a basic plain-text message. Before you can do anything, you must
import the required class, which is MIMEText. If you were creating some
other sort of message, you’d need to import other classes or import the
email.mime module as a whole.

 The MIMEText() constructor requires message text as input. This is the
body of your message, so it might be quite long. In this case, the mes-
sage is relatively short — just a greeting.

 At this point, you assign values to standard attributes. The example
shows the three common attributes that you always define: Subject,
From, and To. The two address fields, From and To, contain both a
human-readable name and the e-mail address. All you have to include is
the e-mail address.

 3. Type msg.as_string() and press Enter.

 You see the output shown in Figure 16-8. This is how the message actu-
ally looks. If you have ever looked under the covers at the messages pro-
duced by your e-mail application, the text probably looks familiar.

 The Content-Type reflects the kind of message you created, which
is a plain-text message. The charset tells what kind of characters are
used in the message so that the recipient knows how to handle them.
The MIME-Version specifies the version of MIME used to create the
message so that the recipient knows whether it can handle the content.
Finally, the Context-Transfer-Encoding determines how the mes-
sage is converted into a bit stream before it is sent to the recipient.

321 Chapter 16: Sending an E-Mail

Figure 16-8:

Python

adds some

additional

information

required to

make your

message

work.

Specifying the transmission
An earlier section (“Defining the parts of the envelope”) describes how the
envelope is used to transfer the message from one location to another. The
process of sending the message entails defining a transmission method.
Python actually creates the envelope for you and performs the transmission,
but you must still define the particulars of the transmission. The following
steps help you understand the simplest approach to transmitting a message
using Python. These steps won’t result in a successful transmission unless
you modify them to match your setup. Read the “Considering the SMTP
server” sidebar for additional information.

 1. Use the Python Shell window that you opened if you followed the
steps in the “Defining the message” section.

 You should see the message that you created earlier.

 2. Type the following code (pressing Enter after each line and pressing
Enter twice after the last line):

import smtplib
s = smtplib.SMTP('localhost')

 The smtplib module contains everything needed to create the message
envelope and send it. The first step in this process is to create a connec-
tion to the SMTP server, which you name as a string in the constructor. If
the SMTP server that you provide doesn’t exist, the application will fail
at this point, saying that the host actively refused the connection.

322 Part IV: Performing Advanced Tasks

 3. Type s.sendmail(‘SenderAddress’, [‘RecipientAddress’], msg.as_string())
and press Enter.

 In order for this step to work, you must replace SenderAddress and
RecipientAddress with real addresses. Don’t include the human-
readable form this time — the server requires only an address.

 This is the step that actually creates the envelope, packages the e-mail
message, and sends it off to the recipient. Notice that you specify the
sender and recipient information separately from the message, which
the SMTP server doesn’t read.

 4. Close the Python shell.

Considering the message subtypes
The “Defining the message” section, earlier in this chapter, describes the
major e-mail message types, such as application and text. However, if e-mail
had to rely on just those types, transmitting coherent messages to anyone
would be difficult. The problem is that the type of information isn’t explicit
enough. If you send someone a text message, you need to know what sort of
text it is before you can process it, and guessing just isn’t a good idea. A text
message could be formatted as plain text, or it might actually be an HTML
page. You wouldn’t know from just seeing the type, so messages require a
subtype. The type is text and the subtype is html when you send an HTML
page to someone. The type and subtype are separated by a forward slash, so
you’d see text/html if you looked at the message.

 Theoretically, the number of subtypes is unlimited as long as the platform has
a handler defined for that subtype. However, the reality is that everyone needs
to agree on the subtypes or there won’t be a handler (unless you’re talking
about a custom application for which the two parties have agreed to a custom
subtype in advance). With this in mind, you can find a listing of standard types
and subtypes at http://www.freeformatter.com/mime-types-list.
html. The nice thing about the table on this site is that it provides you with a
common file extension associated with the subtype and a reference to obtain
additional information about it.

Creating the E-mail Message
So far, you’ve seen how both the envelope and the message work. Now it’s
time to put them together and see how they actually work. The following sec-
tions show how to create two messages. The first message is a plain-text mes-
sage and the second message uses HTML formatting. Both messages should
work fine with most e-mail readers — nothing fancy is involved.

323 Chapter 16: Sending an E-Mail

Working with a text message
Text messages represent the most efficient and least resource-intensive
method of sending communication. However, text messages also convey
the least amount of information. Yes, you can use emoticons to help get the
point across, but the lack of formatting can become a problem in some situa-
tions. The following steps describe how to create a simple text message using
Python. This example also appears with the downloadable source code as
TextMessage.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after each
line:

from email.mime.text import MIMEText
import smtplib

msg = MIMEText("Hello There!")

msg['Subject'] = 'A Test Message'
msg['From']='SenderAddress'
msg['To'] = 'RecipientAddress'

s = smtplib.SMTP('localhost')
s.sendmail('SenderAddress',
 ['RecipientAddress'],
 msg.as_string())

print("Message Sent!")

 This example is a combination of everything you’ve seen so far in the
chapter. However, this is the first time you’ve seen everything put
together. Notice that you create the message first, and then the envelope
(just as you would in real life).

 3. Choose Run➪Run Module.

 The application tells you that it has sent the message to the recipient.

324 Part IV: Performing Advanced Tasks

Working with an HTML message
An HTML message is basically a text message with special formatting. The
following steps help you create an HTML e-mail to send off. This example also
appears with the downloadable source code as HTMLMessage.py.

 1. Open a Python File window.

 You see an editor in which you can type the example code.

 2. Type the following code into the window — pressing Enter after each
line:

from email.mime.text import MIMEText
import smtplib

msg = MIMEText(
 "<h1>A Heading</h1><p>Hello There!</p>","html")

Considering the SMTP server
If you tried the example in this chapter with-
out modifying it, you’re probably scratching
your head right now trying to figure out what
went wrong. It’s unlikely that your system has
an SMTP server connected to localhost. The
reason for the examples to use localhost is to
provide a placeholder that you replace later
with the information for your particular setup.

In order to see the example actually work, you
need an SMTP server as well as a real-world
e-mail account. Of course, you could install
all the software required to create such an
environment on your own system, and some
developers who work extensively with e-mail
applications do just that. Most platforms come
with an e-mail package that you can install,
or you can use a freely available substitute
such as Sendmail, an open source product
available for download at https://www.
sendmail.com/sm/open_source/

download/. The easiest way to see the
example work is to use the same SMTP server
that your e-mail application uses. When you
set up your e-mail application, you either asked
the e-mail application to detect the SMTP
server or you supplied the SMTP server on
your own. The configuration settings for your
e-mail application should contain the required
information. The exact location of this infor-
mation varies widely by e-mail application, so
you need to look at the documentation for your
particular product.

No matter what sort of SMTP server you even-
tually find, you need to have an account on that
server in most cases to use the functionality it
provides. Replace the information in the exam-
ples with the information for your SMTP server,
such as smtp.myisp.com, along with your
e-mail address for both sender and receiver.
Otherwise, the example won’t work.

325 Chapter 16: Sending an E-Mail

msg['Subject'] = 'A Test HTML Message'
msg['From']='SenderAddress'
msg['To'] = 'RecipientAddress'

s = smtplib.SMTP('localhost')
s.sendmail('SenderAddress',
 ['RecipientAddress'],
 msg.as_string())

print("Message Sent!")

 The example follows the same flow as the text message example in the
previous section. However, notice that the message now contains HTML
tags. You create an HTML body, not an entire page. This message will
have an H1 header and a paragraph.

 The most important part of this example is the text that comes after the
message. The "html" argument changes the subtype from text/plain
to text/html, so the recipient knows to treat the message as HTML
content. If you don’t make this change, the recipient won’t see the HTML
output.

 3. Choose Run➪Run Module.

 The application tells you that it has sent the message to the recipient.

Seeing the E-mail Output
At this point, you have between one and three application-generated mes-
sages (depending on how you’ve gone through the chapter) waiting in your
Inbox. To see the messages you created in earlier sections, your e-mail appli-
cation must receive the messages from the server — just as it would with
any e-mail. Figure 16-9 shows an example of the HTML version of the message
when viewed in Output. (Your message will likely look different depending on
your platform and e-mail application.)

If your e-mail application offers the capability to look at the message source,
you find that the message actually does contain the information you saw
earlier in the chapter. Nothing is changed or different about it because after it
leaves the application, the message isn’t changed in any way during its trip.

326 Part IV: Performing Advanced Tasks

Figure 16-9:

The HTML

output

contains a

header and

a paragraph

as expected.

 The point of creating your own application to send and receive e-mail isn’t
convenience — using an off-the-shelf application serves that purpose much
better. The point is flexibility. As you can see from this short chapter on the
subject, you control every aspect of the message when you create your own
application. Python hides much of the detail from view, so what you really
need to worry about are the essentials of creating and transmitting the mes-
sage using the correct arguments.

